
Preferences in Data Production Planning

Keith Golden and Ronen Brafman∗ and Wanlin Pang†

NASA Ames Research Center
Moffett Field, CA 94035
keith.golden@nasa.gov

Abstract
This paper discusses the data production problem,
which consists of transforming a set of (initial) in-
put data into a set of (goal) output data. There
are typically many choices among input data and
processing algorithms, each leading to significantly
different end products. To discriminate among
these choices, the planner supports an input lan-
guage that provides a number of constructs for
specifying user preferences over data (and plan)
properties. We discuss these preference constructs,
how we handle them to guide search, and additional
challenges in the area of preference management
that this important application domain offers.

1 Introduction
Petabytes of remote sensing data are available from Earth-
observing satellites to help measure, understand, and fore-
cast changes in the Earth system, but using these data effec-
tively can be surprisingly hard. The volume and variety of
data files and formats are daunting. Simple data management
activities, such as locating and transferring files, changing
file formats, gridding point data, and scaling and reproject-
ing gridded data, can consume far more personnel time and
resources than the actual data analysis. We address this prob-
lem by developing a planner-based agent for data production,
called IMAGEbot, that takes data product requests as high-
level goals and executes the commands needed to produce
the requested data products.

The data production problem consists of converting an ini-
tial set of low-level data products into higher-level data prod-
ucts that can be used for science or decision support. The
data products we are concerned with are geospatial data mea-
suring specificvariablesof the Earth system, such as pre-
cipitation, but our approach is also applicable to other types
of data. Higher level data products may be transformed ver-
sions of lower level data products, or they may be entirely
new products providing estimates or predictions of unknown
Earth system variables, such as soil moisture, based on known
variables, such as precipitation. These variables are estimated
by running one or more computationalmodels, such as sim-
ulation codes. The models can be precisely characterized in

∗QSS Group Inc.
†QSS Group Inc.

terms of their input and output requirements, which makes
them straightforward to represent in an AI system. The mod-
els are also generally scale invariant, and thus insensitive to
details of their gridded data inputs, such as resolution and
projection, as long as the inputs are coregistered.1

Script-based approaches to automation specialize in par-
ticular data formats and resolutions in order to simplify the
programming. To get the model inputs into a common format
acceptable to the model, it is generally necessary to apply var-
ious data transforms, such as reprojection of grid data into a
common projection, mosaicking or subsetting to change the
spatial extent and conversion of point data to grid data. Fur-
ther processing is needed to visualize the results, such as gen-
eration of false-color images, trend graphs and histograms.

Our IMAGEbot system goes beyond the use of scripts to
provide for a much more adaptive and flexible planning-based
approach. IMAGEbot views data production as a planning
problem whose initial state describes the current set of avail-
able (typically, low-level) data products, and whose goal state
describes the properties of the desired high-level data product.
Operators correspond to data transformation and generation
tools. Thus, IMAGEbot can be viewed as a tool for automat-
ically generating plans (or scripts) for a particular need. This
is a much more powerful approach: IMAGEbot is not tied to
a specific set of input formats or a specitic end product, it can
handle diverse end-products and initial data sources.

However, the data production problem differs from stan-
dard planing problems in a number of aspects, and in this
paper we wish to focus on its goal specification. In the data
production domain, for any given Earth system variable, there
are generally several data products to choose from, which dif-
fer along a number of dimensions, such as spatial and tem-
poral resolution, spatial and temporal coverage and quality.
Models and other data transforms also vary along a number
of dimensions, such as input requirements, CPU time, and
accuracy for a given geographic region. Different choices for
inputs and operators yield data products that can conform to
the user’s basic requirements, but differ substantially in terms
of various aspects. The user does not have all the information
needed to recognize which final data products are feasible, but
she definitely has important preferences about the properties
of these end products. Thus, rather than specifying a goal,

1The termcoregistereddenotes the fact that corresponding pixels
describe the same point in space, meaning the images describe the
same region with an identical resolution and projection.

she needs to specify goal preferences and goal constraints.
IMAGEbot must attempt to find and generate the most pre-
ferred data product given this specification.

In this paper, we discuss the data production problem, and
more specifically, the use of planning to address the data pro-
duction problem and the use of preferences to bias the search
for a plan. Our work provides an interesting and important
application domain for preference reasoning, as well as an
interesting example of the use of preferences to guide search.
Currently, IMAGEbot supports only simple, unconditional
preferences, and one of our goals is to explain some of the
challenges that we see in integrating more powerful and use-
ful preference reasoning techniques.

2 The Data Production Problem
We applied IMAGEbot to the domain of the Terrestrial Ob-
servation and Prediction System (TOPS). In this section we
explain the data production problem in this domain in more
detail. Later sections discuss the view of data integration as
planning and the algorithms used to implement it.

2.1 TOPS
The Terrestrial Observation and Prediction System (TOPS,
http://ecocast.arc.nasa.gov) is an ecological forecasting sys-
tem that assimilates data from Earth-orbiting satellites and
ground weather stations to model and forecast conditions on
the surface, such as soil moisture, vegetation growth and plant
stress[Nemaniet al., 2002]. TOPS customers include scien-
tists, farmers and land managers. With such a variety of cus-
tomers and data sources, there is a strong need for a flexible
mechanism for producing the desired data products for the
customers, taking into account the information needs of the
customer, data availability, deadlines, resource usage (some
models take many hours to execute) and constraints based on
context (a scientist with a palmtop in the field has different
display requirements than when sitting at a desk). IMAGE-
bot provides such a mechanism, accepting goals in the form
of descriptions of the desired data products.

The goal of TOPS is to monitor and predict changes in key
environmental variables. Early warnings of potential changes
in these variables, such as soil moisture, snow pack, and pri-
mary production could enhance our ability to make better
socio-economic decisions relating to natural resource man-
agement and food production[Nemaniet al., 2000]. The
accuracy of such warnings depends on how well the past,
present and future conditions of the ecosystem are charac-
terized.

2.2 Data Choices
There are many satellites providing observations of the
Earth’s surface, and for any given variable, there are gener-
ally several choices available that could provide it. However,
these choices are not all equally good, and which ones are
better may depend on the application. Even for a fixed ap-
plication, having access to multiple data sources can provide
needed redundancy

The inputs needed by TOPS include: Fractional Photo-
synthetically Active Radiation (FPAR) and Leaf Area Index
(LAI); Temperatures (minimum, maximum and daylight av-
erage); Precipitation; Solar Radiation; Humidity. We have
several potential candidate data sources at the beginning of

lon
lat
lon
lat

45
-120
30
-80

ul

lr
res
proj

content
format
quality
clouds

8km
LAZEA

.
bin
.90
.10

Biome-BGC Model

inputs fpar lai precip ...

outputs soilwgpp snow ...

res
proj

content
format
quality
clouds

8km
LAZEA

.
bin
.90
.10

res
proj

content
format
quality

8km
LAZEA

.
bin
.90

date
region

var

1/1/05
.

FPAR

date
region

var

1/1/05
.

LAI
source MODIS source MODIS

date
region

var

1/1/05
.

GPP
source BGC

Figure 1: Structured inputs and outputs to a TOPS model

each model run. The basic properties of the inputs are listed
in Table 1. The specific data inputs that are selected will de-
pend on goal constraints, such as requirements on resolution,
coverage or resource limits, and preferences.

In addition to the attributes listed in Table 1, data sources
also vary in terms of quality and availability – some inputs are
not always available even though they should be. For exam-
ple, both the Terra and Aqua satellites have experienced tech-
nical difficulties and data dropouts over periods ranging from
a few hours to several weeks. Depending on the data source,
different processing steps are needed to get the data into a
common format. We have to convert the point data (CPC and
Snotel) to grid data, and we must reproject grid data into a
common projection, subset the dataset from its original spa-
tial extent and populate the input grid used by the model. The
data are then run through the TOPS model, which generates
desired outputs. Figure 1 describes some of the structured
inputs and outputs in a TOPS model.

2.3 Algorithm Choices
In addition to input choices, we also have several choices of
models to use with the data. As with the data, the models
produce results of various quality, resolution, and geographic
extent. Moreover, there may sometimes be significant trade-
offs in performance versus precision. An FPAR/LAI algo-
rithm provides a good example of this tradeoff. We can pro-
duce an FPAR/LAI pixel using either a lookup table or a ra-
diative transfer method[Knyazikhinet al., 1999]. In the case
of a lookup table, we derive a Normalized Difference Vegeta-
tion Index (NDVI) from two surface reflectance channels by a
means of a simple equation, and then use the NDVI value to-
gether with its landcover value as a key into a static lookup ta-
ble that will give us the FPAR and LAI values. The complex-
ity of this algorithm is O(1). On the other hand, we can use
the radiative transfer method, which contains a large number
of intermediate computations and has complexity O(nlogn),
wheren is the number of pixels in the input data. This fact,
together with the number of runs we may attempt, translates
into a substantial difference in user time, and while the radia-

Source Variables Frequency Resolution Coverage
Terra-MODIS FPAR/LAI 1 day 1km, 500m, 250m global
Aqua-MODIS FPAR/LAI 1 day 1km, 500m, 250m global

AVHRR FPAR/LAI 10 day 1km global
SeaWIFS FPAR/LAI 1 day 1km x 4km global

DAO temp, precip, rad, humidity 1 day 1.25 deg x 1.0 deg global
RUC2 temp, precip, rad, humidity 1 hour 40 km USA
CPC temp, precip 1 day point data USA

Snotel temp, precip 1 day point data USA
GCIP radiation 1 day 1/2 deg continental

NEXRAD precipitation 1 day 4 km USA

Table 1:TOPS input data choices

tive transfer method provides us with good results, it is not
suitable for more interactive or first-pass applications, where
the lookup table is sufficient. In these first-pass applications,
we are looking for large abnormalities and deviations from
long term normals, so high precision runs do not necessarily
provide us with better results.

3 Data Production as a Planning Problem
Data processing has traditionally been automated by writ-
ing shell scripts. There are some situations when scripts are
the best approach: namely, when the same procedure is to
be applied repeatedly on different inputs, the environment is
fairly stable and there are few choices to be made. How-
ever, in many applications, including TOPS, none of these as-
sumptions holds. There are many different data products we
would like the system to produce, there are many inputs and
data-processing operations to choose from in producing those
products, and the availability of these inputs can change over
time. Additionally, the domain lends itself to planner-based
automation; it has precisely characterized inputs and outputs
and operations whose effects can also be precisely charac-
terized. A planning approach introduces greater flexibility
into the entire data-processing system. For example, rather
than specifying specific data sources and formats to ensure
that all the model inputs are consistent, we simply specify a
constraint that all the model inputs need to be co-registered.
Which inputs are chosen can then be determined based user
goals and preferences and data availability.

3.1 Data Products
Data products are complex data structures. For example, a
satellite image is a collection of pixels, each of which corre-
sponds in some way to the light reflected from the Earth at a
particular place and time. Viewed more abstractly, the entire
image may be described in terms of the Earth system vari-
able (or wavelength) represented, the time the image was cap-
tured, the projection, resolution and region of the image, the
satellite and instrument that performed the capture, the num-
ber of “good” (e.g., not cloudy) pixels, and other attributes.
In general, the structure of a data product can be described
in terms of a type, such as image or animation, and a fixed
set of attributes that are determined by its type. For nota-
tional convenience, we can view the object type as another
attribute, and represent the object as a tuple of attribute val-
ues. For example, a file with pathname “/dir/README” and

size 56 that is readable but not writable might be represented
as〈File, "/dir/README", 56, True, False〉. Attribute values
may be primitive values, such as numbers or strings, or may
themselves be structured objects or sets of structured objects.

3.2 Data Product Transforms
Data products differ from physical objects in one key aspect:
they are arbitrarily replicable. If the same file is needed by
multiple processes, even concurrent processes, there is no
conflict beyond some disk and network contention, which can
be mitigated by replication. The ease of copying data, and the
relatively low cost of storage, allows us to adopt a strategy of
treating data as immutable; any process that needs to modify
a given file can modify a copy of the file instead. Of course,
there are applications, such as databases, where destructive
modification of shared data is desired, but those are not the
applications this work addresses.

A DP transform is a process that takes one or more data
products as inputs and produces one or more data products
as outputs, such as a program that composes a number of
images into a movie. LetD be the set of all possible data
products. Formally, we can define a DP transform as a tu-
ple 〈I ,O,Π,E〉, whereI ⊂ D is a set of input data prod-
ucts,O ⊂ D is a set of output data products,Π is a precon-
dition specification describing conditions onI , and E is a
postcondition specification describing conditions onO. DP
transforms are nondestructive; the data products inI are un-
changed and outputs inO are newly created objects.

For example, consider the action Convert, shown graphi-
cally in Figure 2. This action takes a binary image file and
converts it to a specified format (designated by the parameter
fmt, which has the specified value “JPG” in the figure).I
andO each consist of a single object, represented by the par-
titioned boxes in the figure.Π consists of two preconditions:
that the format of the input is “binary” and the pathname is
inPath. E consists of three postconditions: that the format
of the output is equal to fmt, that the pathname is outPath and
that all other conditions are the same as those of the input.
The later condition is called a “copyof” condition[Golden,
2002]. Specifying that a given output is a “copyof” a given
input provides essentially the same advantage (and has a sim-
ilar interpretation) as the Strips assumption in planning: it
allows us to avoid listing all the ways that the DP transform
doesn’tchange the data.

A data production problem(DPP) is a tuple〈ID,AD,GD〉,
whereID is a set of initial data products,GD is a specifica-

tion of a set of required data products, andAD ⊆ 2D × 2D

is a set of data transforms, each mapping a set of input data
products to a set of output data products. Note the similarity
to state-based planning problems. Instead of having one ini-
tial state and a goal state, we have multiple initial and goal
data products, and actions, instead of mapping one input state
to one output state, map one or more input data products to
one or more output data products. Whereas a plan in classi-
cal state-based planning is a single path from the initial state
to the goal state (along the graph induced by the actions), a
data-production plan is a directed acyclic graph.

3.3 Large dynamic universes
Most planners make the closed-world assumption and, fur-
ther, rely on grounded representations in which all actions
and predicates are instantiated with all possible constants. In
DP domains, as in information integration and software agent
domains[Golden, 1998; Etzioni & Weld, 1994], it is impos-
sible to identify in advance all objects in the universe. The
number of available files is huge and increasing on an hourly
basis. Furthermore, most actions create new objects, so the
universe is not even static within the planning horizon. An
examination of the standard benchmark planning problems
reveals that even the hard problems typically have fewer than
100 objects total. In contrast, if we consider a single product
from a single instrument (MODIS) on a single satellite (say,
Terra) for a single day, there are 288 tiles. To produce a given
data product, we may need to consider multiple products from
multiple instruments, residing on multiple satellites, and mul-
tiple days’ worth of data.

While the details of the specific files to process could be
abstracted away in some cases, such an approach is not ro-
bust. Particular files may need special processing that other
files do not. Sometimes needed files are missing, and sub-
stitutes from other sources must be obtained. Even worse,
files are not the smallest unit of granularity; they have sub-
structure. For example, image-processing actions act on pix-
els in the image — either all pixels or a subset determined by
some selection criteria. Again, this detail can sometimes be
abstracted away, but not always. Additionally, many actions
take numeric and string arguments. Appropriate values for
these arguments may be determined through constraint rea-
soning, but there is no way to list all possible valuesa priori.
The sheer volume of possible actions makes a grounded rep-
resentation unsuitable.

4 Data Product Goals and Preferences
A data product goal is a specification of one or more data
products. For example, suppose a user requests an image of
any resolution, in TIFF format, representing the Gross Pri-
mary Production (GPP) for the continental US on Jan 12,
2005, from any source. This goal could be represented as

g= 〈Image, -, -,〈Variable,〈Date,2005,12〉 ,USA,GPP〉 ,TIFF, -〉

where “-” means “don’t care.” In practice, a user is not likely
to be indifferent to the resolution of the image, but unless
she has very specific requirements, she may not want to spec-
ify an exact value for the resolution, in case data products of
that resolution are unavailable. She may, however, have con-
straints on the resolution. For example, anything above 8km
is too coarse, and anything below 250m is too large:

g = 〈Image, r, . . . , -〉∧250m≤ r ≤ 8000m

On the other hand, the user may want the highest (or lowest)
resolution available, whatever that is. This can be specified
usingmaximize (or minimize, respectively):

g = 〈Image, r, . . . , -〉∧minimize(r)

What about preferences that don’t involve numeric quanti-
ties? The user may have a preference of instruments used to
capture the data, which are not reflected by a numeric value,
such as quality or resolution. We allow the specification of an
arbitrary order over values using the keywordprefer:

g= 〈. . .〈Variable,〈Date,2005,12〉 ,USA,FPAR, i〉 . . .〉∧
prefer(i, {MODIS, AVHRR, SeaWIFS })

So far, we have only considered the case where the user has
a preference over a single attribute. In practice, a user is
likely to have preferences over multiple attributes, for exam-
ple, wanting the best possible resolution and quality in the
least possible time and at the lowest cost. Satisfying all these
preferences simultaneously may not be possible, so we force
the user to choose which is the most important. For example,

prefer(i, {MODIS, SeaWIFS }); minimize(r)

is interpreted to mean “find the best data source first and the
best resolution for that data source,” whereas

minimize(r) ; prefer(i, {MODIS, SeaWIFS })

means “give me the best resolution and the best data source
that provides that resolution.” It is not always possible to or-
der preferences in this way. For example, suppose one of the
attributes is cost. A user may be willing to pay more for high-
quality data, but will still want a good value. It is possible to
specify more complex preferences, combining two or more
attributes, by using constraints. For example, to maximize
data quality,q, while minimizing price,p, we could write:

m= q
p+ε∧maximize(m).

However, there are three problems with this approach:

1. A typical user is not going to be prepared to specify
how to combine various quantities, such as resolution
and quality, into a single preference function.

2. More complex preference functions may make the
search problem much harder.

3. It only works for preferences over numeric variables. It
does not provide a way of combining preferences over,
say data source and resolution.

The preferences we have shown so far apply only to the goal
because they are all defined on planner variables that are re-
ferred to in the goal specification. A sophisticated user might
have preferences over choices that the planner makes that
aren’t directly reflected in goal attributes. For example, a
given data source may be preferred to all others whenever that
choice is made. This can be specified using universal pref-
erences over types. For example, to indicate that NEXRAD
and RUC2 are always the preferred sources of meteorological
data, and NEXRAD is preferred to RUC2, we write:

prefer(Source, {NEXRAD, RUC2}).

This preference gets expanded out into preferences over all
variables of type Source that appear in the plan, and these
preferences are all unordered with respect to each other.

Goal
res
proj

content

format
path

8km
LAZEA

JPG
-

date
region

var

1/1/05
USA
GPP

source BGC

ConvertTo(fmt, outPath, inPath)

-
-
-

outPath
fmt = JPG

-
-
-

inPath
binary

inputoutput

Subgoal
res
proj

content

format
path

8km
LAZEA

binary
inPath

date
region

var

1/1/05
USA
GPP

source BGC

Figure 2: Goal regression for structured objects.

img

reproject scale mosaic

im
g=projOut im

g=
sc

ale
Out

img=mosOut

rgb-
Compose

gridhsv-
Compose

img=gridOut

im
g=

hs
vO

ut

img = rgbOut

comp

pic
mosIn=pic

sc
ale

In
=p

ic

table

gri
dIn

=ta
ble

bw

rg
bI

n=
bw hsvIn=bw

col

pro
jIn

=c
ol scaleIn=col

mosIn=col

Figure 3: Lifted planning graph with constraints

5 Optimality and Search
We plan by converting the planning problem into a CSP. For
most problems, the CSP’s search space is infinite. Thus,
the construction and solution of the CSP is incremental and
proceeds backward from the goal. The CSP contains: 1)
Boolean variables for all causal links, actions and conditions.
2) Variables for all parameters, input and output variables
and function values. 3) For every condition in the graph, a
constraint specifying when that condition holds (for condi-
tions supported by causal links, this is just the XOR of the
link variables). 4) For conjunctive and disjunctive expres-
sions, a constraint that represents the conjunction or disjunc-
tion of the boolean variables corresponding to appropriate
sub-expressions. 5) For every arc (causal link) in the graph,
constraints specifying the conditions under which the sup-
ported fluents will be achieved (i.e.,γα

p ⇒ p, whereγα
p is

the precondition of needed to achievep). 6) User-specified
constraints. 7) Constraints representing structured objects.

In order to find an optimal plan, the planner needs to en-
sure that plans that assign preferred values to preferred vari-
ables are considered before plans that do not. We achieve
this by the simple expedient of ordering preferred variables
first, in the order of preference. When there are multiple un-
ordered preferred variables, such as those generated by type
preferences, they are ordered arbitrarily. The resulting plan is
guaranteed to be Pareto optimal.

Our approach to achieving optimality can have a very bad
effect on planner performance. The planner is forced to im-
mediately search over variables that would not normally be
considered until much later. These variables may have large
domains that would have been pruned considerably by prop-
agation if considered later, and the impact of infeasible value
choices may likewise not be apparent until later in the search.
Even worse, the domain of a variable may be infinite, in
which case it could be impossible for our algorithm to find

a plan in finite time. We have a number of tricks to mitigate
these factors:
Planning graph propagation: At the beginning of search,
the planner constructs alifted planning graphrepresentation
of the search space. Whereas a conventional planning graph
[Blum & Furst, 1997] is a grounded representation, consisting
of ground actions and propositions, alifted planning graph
contains variables. Whereas a standard planning graph has
only mutual exclusion constraints, our lifted planning graph
contains constraints that specify the values of parameters in
actions and conditions in terms of other parameters (Figure
3). We have developed a novel constraint propagation algo-
rithm that exploits the structure of the planning graph to elim-
inate values from variable domains when those values could
not appear in any possible plan. For example, resolution is
specified as an integer, which has an infinite domain, but in
practice, only a small number of resolutions are available. For
example, the available resolutions for most data products in
TOPS are limited to 1 degree, 40 km, 8 km, 1 km and 250 m,
and some products are only available in two or three resolu-
tions. This is very easy to discover using action-graph-based
propagation.
Variable independence: Data processing domains have con-
siderable parallelism, rendering many choices independent of
each other. For example, running the TOPS BGC model re-
quires 7 inputs. If we wish to do 7 TOPS runs, for example,
to construct a weekly composite, we will need 49 variables.
There happen to be 7 potential data sources for each of the
variables. A type preference could easily result in separate
preferences on all 49 variables, resulting in 749 combinations
to search over. However, as long as the resolution is fixed,
the choice of values for one day will not in any way affect the
choices for the remaining days, and inputs for a given day are
also independent. Thus, instead of needing to consider 749,
we can reduce that to 7×49.

6 Discussion
We provided an overview of the problem of data production,
the planning-based approach we use to address it, and the
important role the preferences and optimization play in this
problem. There are many things we would like to improve
in this system and many interesting issues that it raises. We
now wish to discuss a number of them:

Preference LanguageCurrently, users can express uncon-
ditional preferences over the values of an attribute. Seman-
tically, we treat these preferences asceteris paribusprefer-
ences, and our planner generates a data-product that is Pareto-
optimal with respect to the partial order induced by thesece-
teris paribuspreferences[Boutilier et al., 2004]. However,
our current preference specification language is restricted.
First, some preferences in our domain are conditional. For
example, a user may prefer the best possible resolution if
the data quality is good, while preferring to save time and
bandwidth if the quality is poor. Second, we would like to
handle preference tradeoffs better. This has two aspects: (1)
The strength of a preference may differ depending on context.
Thus, we want to express the fact that sometimes it is desired
to find the best data source first and then give the best resolu-
tion, and sometimes we would like to do the opposite. This
naturally leads to the notion of conditional importance used

in TCP-nets[Brafman & Domshlak, 2002]. (2) We would
like to express more subtle tradeoffs over numeric variables.
Earlier, we showed how we can define a new parameter (the
ratio of data quality and price, in our example) and express
a preference over it. However, in practice, we do not have a
single preference for the value of this ratio. Rather, we prefer
tradeoffs at different value regions.

Both conditional preferences and conditional importance
relations are expressible in the language of TCP-nets.
PrefPlan[Brafman & Chernyavsky, 2005] is a recent planner
developed in order to allow for more flexible, preference-
based, goal specification. Both PrefPlan and IMAGEBot use
a constraint-based planning approach, but PrefPlan supports
preferences specified in the language of TCP-nets. Thus, we
believe that adapting IMAGEbot to handle such conditional
preferences and importance relations should not be difficult.
Handling the type of relative importance relations described
in (2) above appears to be more challenging, but we are
hopeful that similar algorithmic techniques can be used.

Search EfficiencyIt is well known that variable ordering is
one of the most important factors influencing the solution
time of constraint satisfaction problems. Our CSP-based
planner (as well as PrefPlan’s) must first instantiate variables
on which preferences have been expressed. This can restrict
our ability to select any variable orderings. The reason for
this is simple – supposeA andB are variables such that we
have preferences overA, but not overB, and thatA’s feasible
values are a function ofB’s value. If we orderB beforeA,
we may first instantiateB to a value that constrainsA to a
less preferred value, and if that eventually leads to a feasible
solution, it may not be a Pareto-optimal one. However, it may
be the case that it is much easier to solve the problem when
B is ordered beforeA. We believe that investigating ways
of overcoming this problem is an important practical issue
in preference-based constrained optimization. We see two
possible approaches that might work but need to be worked
out more carefully. The first is the derivation of induced
preferences. In the above example, the preferences overA
induce preferences over values ofB, i.e., those values that are
compatible withA’s more prefered values. However, it seems
that, in general, working out these dependent preferences
will be quite complicated. Another possible direction is using
limited backtracking or some branch-and-bound approach.
In this approach, we would allowB to be ordered before
A; we would attempt to heuristically induce preferences
over B and use them to orderB’s values; and if a solution
is obtained, we would then do additional limited search in
order to verify its optimiality.

Problem-Focused Preference ElicitationPreference elicita-
tion is a major concern for us. Our domains have a large num-
ber of objects, variables, and alternative operators. We would
like to minimize the effort required by the user in order to
specify a preference relation that is sufficiently rich to iden-
tify the optimal data product. We would like to use the lifted
planning graph to generate some information about reachable
data products, analyze what preference information can dif-
ferentiate between these products efficiently, and ask the user
for this preference information.

Another challenging aspect of our domain is the lack of

certainty about certain variable values. For instance, some
operations simply fetch data from data repositories. The qual-
ity of such data is not known ahead of time. Thus, if some im-
age was taken on a day with substantial cloud cover, it may
be unusable. Similarly, some of our operators involve the
use of sophisticated models, the output of which is not know
before the actual computation is performed. Thus, ideally,
we need an interactive preference elicitation process: First,
we analyze the problem instance to recognize the variables
on which we are most likely to need preference information.
Then, when we execute our plans and monitor intermediate
results. If they are outside some expected parameters, we
need to reinvolve the user in order to recognize whether an
alternative plan should be pursued (and which plan).

References
[Blum & Furst, 1997] Blum, A., and Furst, M. 1997. Fast planning

through planning graph analysis.J. Artificial Intelligence90(1–
2):281–300.

[Boutilier et al., 2004] Boutilier, C. Brafman, R.; Domshlak, C.;
Hoos, H. H.; and Poole, D. 2004. CP-nets: A tool for repre-
senting and reasoning with conditionalceteris paribuspreference
statements.J. Artificial Intelligence Research21.

[Brafman & Chernyavsky, 2005] Brafman, R. I., and Chernyavsky,
Y. 2005. Planning with goal preferences and constraints. InProc.
15th Intl. Conf. AI Planning and Scheduling (ICAPS).

[Brafman & Domshlak, 2002] Brafman, R. I., and Domshlak, C.
2002. Introducing Variable Importance Tradeoffs into CP-Nets.
In Proc. 18th Conf. Uncertainty in Artifical Intelligence.

[Etzioni & Weld, 1994] Etzioni, O., and Weld, D. 1994. A softbot-
based interface to the Internet.C. ACM37(7):72–6.

[Golden, 1998] Golden, K. 1998. Leap before you look: Informa-
tion gathering in the PUCCINI planner. InProc. 4th Intl. Conf.
AI Planning Systems.

[Golden, 2002] Golden, K. 2002. DPADL: An action language for
data processing domains. InProceedings of the 3rd NASA Intl.
Planning and Scheduling workshop, 28–33. to appear.

[Knyazikhinet al., 1999] Knyazikhin, Y.; Glassy, J.; Privette, J. L.;
Tian, Y.; Lotsch, A.; Zhang, Y.; Wang, Y.; Morisette, J. T.;
Votava, P.; Myneni, R. B.; Nemani, R. R.; and Running,
S. W. 1999. MODIS Leaf Area Index (LAI) and Fraction
Of Photosynthetically Active Radiation Absorbed by Vegetation
(FPAR) Product (MOD15) Algorithm Theoretical Basis Docu-
ment. http://eospso.gsfc.nasa.gov/atbd/modistables.html.

[Nemaniet al., 2000] Nemani, R.; White, M.; Votava, P.; Glassy,
J.; Roads, J.; and Running, S. 2000. Biospheric forecast system
for natural resource management. InProcceedings of GIS/EM -4.

[Nemaniet al., 2002] Nemani, R.; Votava, P.; Roads, J.; White,
M.; Thornton, P.; and Coughlan, J. 2002. Terrestrial observa-
tion and prediction system: Integration of satellite and surface
weather observations with ecosystem models. InProceedings of
the 2002 International Geoscience and Remote Sensing Sympo-
sium (IGARSS).

